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In this paper, we study the effect of the Reynolds number (Re) on the dynamics
and vortex formation modes of spheres rising or falling freely through a fluid (where
Re =100–15 000). Since the oscillation of freely falling spheres was first reported
by Newton (University of California Press, 3rd edn, 1726, translated in 1999), the
fundamental question of whether a sphere will vibrate, as it rises or falls, has been the
subject of a number of investigations, and it is clear that the mass ratio m∗ (defined
as the relative density of the sphere compared to the fluid) is an important parameter
to define when vibration occurs. Although all rising spheres (m∗ < 1) were previously
found to oscillate, either chaotically or in a periodic zigzag motion or even to follow
helical trajectories, there is no consensus regarding precise values of the mass ratio
(m∗

crit ) separating vibrating and rectilinear regimes. There is also a large scatter in
measurements of sphere drag in both the vibrating and rectilinear regimes.

In our experiments, we employ spheres with 133 combinations of m∗ and Re, to
provide a comprehensive study of the sphere dynamics and vortex wakes occurring
over a wide range of Reynolds numbers. We find that falling spheres (m∗ > 1) always
move without vibration. However, in contrast with previous studies, we discover
that a whole regime of buoyant spheres rise through a fluid without vibration. It
is only when one passes below a critical value of the mass ratio, that the sphere
suddenly begins to vibrate periodically and vigorously in a zigzag trajectory within
a vertical plane. The critical mass is nearly constant over two ranges of Reynolds
number (m∗

crit ≈ 0.4 for Re = 260–1550 and m∗
crit ≈ 0.6 for Re > 1550). We do not

observe helical or spiral trajectories, or indeed chaotic types of trajectory, unless the
experiments are conducted in disturbed background fluid. The wakes for spheres
moving rectilinearly are comparable with wakes of non-vibrating spheres. We find
that these wakes comprise single-sided and double-sided periodic sequences of vortex
rings, which we define as the ‘R’ and ‘2R’ modes. However, in the zigzag regime,
we discover a new ‘4R’ mode, in which four vortex rings are created per cycle of
oscillation. We find a number of changes to occur at a Reynolds number of 1550,
and we suggest the possibility of a resonance between the shear layer instability and
the vortex shedding (loop) instability. From this study, ensuring minimal background
disturbances, we have been able to present a new regime map of dynamics and vortex
wake modes as a function of the mass ratio and Reynolds number {m∗, Re}, as well as
a reasonable collapse of the drag measurements, as a function of Re, onto principally
two curves, one for the vibrating regime and one for the rectilinear trajectories.

† Email address for correspondence: mh232@cornell.edu
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1. Introduction and preliminary results
Whether a sphere vibrates as it rises or falls through a fluid is of interest in a number

of practical applications. This phenomenon is known to affect drag as well as heat
and mass transfer, which have important implications for sedimentation and other
multiphase flows (e.g. Richardson & Zaki 1954; Stringham, Simons & Guy 1969;
Hartman & Yates 1993), while the oscillatory motion itself can influence atmospheric
measurements using weather balloons (Scoggins 1964; Murrow & Henry 1965). The
earliest observation of the vibration of a rising or falling sphere was reported by
Newton (1726), who studied lead and wax spheres dropped in water, as well as glass
spheres and inflated hog bladders falling through air. In the case of the bladders,
he observed that they ‘did not always fall straight down, but sometimes flew about
and oscillated to and fro while falling. And the times of falling were prolonged and
increased by these motions’, demonstrating that vibration causes greater drag. It was
later suggested by Schmidt (1920), Hirsch (1923) and Schmiedel (1928), that these
oscillatory motions are linked to periodic vortex shedding. Most subsequent studies of
freely rising or falling spheres have concluded that for a given Reynolds number, the
mass ratio m∗ or relative density of the body compared to the fluid, determines when
vibration will occur. Lighter spheres are reported to oscillate transverse to the vertical,
or even to move with helical trajectories, while heavier ones move approximately
rectilinearly. The sole exception to this were experiments by Karamanev, Chavarie &
Mayer (1996), who suggested that the occurrence of vibration does not depend on
the mass ratio, but that oscillatory motion appears when Re/D = U/ν > 1450 cm−1.

Preukschat (1962) concluded that falling spheres (m∗ > 1) have a rectilinear
trajectory, while rising spheres (m∗ < 1) vibrate, over the regime 1000 <Re < 10 000.
The oscillations would begin in a vertical plane, but would sometimes transition to
a three-dimensional non-periodic motion referred to as ‘spiralling’. In a recent paper,
Jenny, Dušek & Bouchet (2004) performed numerical simulations over a selection of
m∗ from 0 to 10, and a range of Galileo number, Ga =

√
|1 − m∗| gD3/ν, between

150 and 350, roughly corresponding to 225 <Re < 550. They propose that there exist
at least five different regimes of sphere trajectories: oblique rectilinear trajectories,
oblique trajectories which have a small oscillating component, periodic zigzag motions,
chaotic trajectories and also a regime where zigzag motions or chaotic paths could
both be found, depending on the initial conditions. In particular, they find the zigzag
regime only below m∗ ≈ 1.

While Preukschat (1962) and Jenny et al. (2004) only found vibration for rising
spheres, there are also a number of studies which observe that spheres can oscillate at
large amplitude even when they are heavier than the surrounding fluid. For instance,
Shafrir (1965) describes ‘irregular corkscrew’ paths, and Christiansen & Barker (1965)
observe ‘slightly spiral’ trajectories for falling spheres. Both these descriptions appear
similar to the ‘spiralling’ motions found by Preukschat (1962) for rising spheres. On
the other hand, Kuwabara, Chiba & Kono (1983) note that spiralling motion is
‘seldom observed’, with falling spheres oscillating primarily in a plane. Both ‘spiral’
and ‘zigzag’ motions were found by MacCready & Jex (1964) in their experiments
with spheres rising and falling through air and water. They argue that the amplitude
of these oscillations (A∗ = A/D = amplitude/diameter) should depend on both the
wavelength of the body’s trajectory, λ∗ = λ/D, and the mass ratio. Employing a fit to
their experimental data, they propose an approximation for the amplitude as

A∗

λ∗/2
=

0.37

1 + 2m∗ . (1.1)
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Symbol Study Re m∗

Vibrating

� Preukschat (1962) 830–5400 0.53–0.95
� MacCready & Jex (1964) 12 000–300 000 0.03–1.52
� Christiansen & Barker (1965) 15 000–20 000 1.18–2.80
� Shafrir (1965) 1100–66 000 1.14–14.95
� Kuwabara et al. (1983) 1500–41 000 1.13–7.8
� Jenny et al. (2004) 230–450 0.0–0.94

Rectilinear

� Preukschat (1962) 520–42 000 1.15–7.78
� Stringham et al. (1969) 15–120 000 1.14–14.95
	 Jenny et al. (2004) 200–310 0.0–10

 Veldhuis & Biesheuvel (2007) 250–350 0.56–2.33

‘Chaotic’

� Jenny et al. (2004) 260–540 0.0–10
�· Veldhuis & Biesheuvel (2007) 250–350 0.56–2.33

Table 1. Reynolds numbers and mass ratios studied in previous investigations of rising and
falling spheres. Types of motion reported are mapped in the mass ratio – Reynolds number
plane in figure 2. Vibrating cases shown with solid symbols; rectilinear motion shown with
open symbols; random, ‘chaotic’ motions shown with bullseye symbols. Reynolds numbers
were not provided by Jenny et al. (2004) and Veldhuis & Biesheuvel (2007), and were estimated
from reported values of Ga.

A typical wavelength for zigzagging motion is cited as of the order of λ∗ = 12.
Therefore, according to (1.1), amplitudes for falling spheres as large as A∗ = 0.7
are predicted. The Reynolds numbers for these studies are typically of the order
Re ∼ 1000–10 000, as shown in table 1. At lower Reynolds numbers, several images
from the Schlieren visualization study of Veldhuis et al. (2005) suggest that falling
spheres also vibrate. However, in subsequent experiments in which trajectories are
measured (Veldhuis & Biesheuvel 2007), they find that zigzagging motion does not
occur consistently. Instead, for rising spheres, vibration occurs for some experimental
runs, while others exhibit random motion similar to the ‘chaotic’ regime of Jenny
et al. (2004). For falling spheres, only chaotic motion was observed.

The types of motion found in these previous studies are summarized in figure 1,
for those investigations where {m∗, Re} data is available. In some cases, the Reynolds
number was estimated from reported values of the Galileo number (the use of Galileo
number instead of the Reynolds number is discussed in the Appendix). The types
of motion observed may be distinguished from the symbols: solid symbols refer to
large-amplitude vibration, open symbols correspond to motion that is essentially
rectilinear and bullseye symbols are used to denote random transverse (‘chaotic’)
motions. One important feature of this map is that vibration or ‘chaotic’ motion
is found for all rising spheres (m∗ < 1). This statement is applicable for Re above
the threshold where vortex shedding is found, which for a fixed sphere, occurs at
Re > 275. It is also worth noting that most of the previous investigations shown here
are restricted to a relatively narrow range of mass ratio or Reynolds number. None
have attempted to provide a comprehensive description of the changes that occur over
the range of Re spanned in this map. Moreover, there has been very little work on
light spheres (m∗ < 0.6), especially at Reynolds numbers greater than Re ≈ 500. It is
evident in figure 1 that even for Reynolds numbers where there has been some study
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Figure 1. Regimes of motion found in previous studies of freely rising and falling spheres,
mapped in the {m∗, Re} plane. Symbols correspond to studies in table 1: solid symbols indicate
vibration, open symbols indicate rectilinear motion, and bullseye symbols indicate ‘chaotic’
motion.

Symbol Study Re m∗

� Karamanev et al. (1996) 180–20 000 0.03–0.92
� Allen (1900) 2300–8300 7.66–7.81
� Liebster (1927) 0.13–2400 6.03–9.14
+ Lunnon (1928) 1600–150 000 7.69–10.5
× Boillat & Graf (1981) 140–13 000 1.02–2.70
� Veldhuis, Biesheuvel & Lohse (2009) 150–2050 0.02–2.63

Table 2. Additional studies reporting drag coefficients of rising and falling spheres. Drag data
for these experiments, as well as for many of the studies listed in table 1, are plotted in figure 2.

of light bodies, the resolution in mass ratio is quite coarse. Due to the sparseness
of the mass ratio data, we cannot draw conclusions about where transitions in the
dynamics occur.

Our map of sphere dynamics based on previous results also demonstrates that
there is substantial disagreement between different studies. For example, Shafrir
(1965) and Kuwabara et al. (1983) stated that a sphere at m∗ =1.15 and Re = 6000
would vibrate. On the other hand, Preukschat (1962) and Stringham et al. (1969)
found that a sphere with these parameters moves rectilinearly. This disagreement also
extends to quantities such as the drag coefficient, which are affected by vibration. In
figure 2, we plot drag measurements for the studies in tables 1 and 2, performed under
laboratory conditions. Here we exclude some early results from spheres dropped in
uncontrolled environments (Shakespear 1914; Bacon & Reid 1923; Lunnon 1926).



Dynamics of rising and falling spheres 255

Re
0

0.5

1.0

1.5

2.0

CD

+
+ + + ++ + + + +++

10 0001000100

Figure 2. Mean drag coefficients from previous studies of freely rising and falling spheres.
Symbols as in tables 1 and 2; —, drag of stationary sphere compiled the book by Schlichting
(1955), where he plots original data from Wieselsberger (1921) and Liebster (1927).

However, despite the possibility of some control over experimental conditions in the
studies of figure 2, there is substantial scatter in this data. Some spheres said to be
vibrating have drag coefficients quite close to the drag on a stationary body (e.g.
Shafrir 1965), while in other cases, large drag increases are reported for oscillatory
motion (MacCready & Jex 1964; Karamanev et al. 1996), consistent with the original
observations by Newton (1726).

Such significant differences between previous results suggest that a key question
remains: Under what conditions does a rising or falling sphere vibrate? In order to
address this question, we will also need to determine what types of motion exist. Even
when spheres are found to vibrate, some studies have found motion in a single plane,
while others describe three-dimensional ‘spiralling’ trajectories. In some cases random
‘chaotic’ paths are found. A key part of the present work will be precise identification
of the regimes of motion for different mass ratios and Reynolds numbers.

We begin our study with a set of preliminary experiments at Re ≈ 10 000 (based
on the terminal velocity), performed in the facility described in § 2. In figure 3,
we show views of the sphere trajectories from the front and from the side of the
tank, as well as Lissajous figures where only the fluctuating part of the motion is
plotted. In our coordinate system, gravity always points in the vertical −X direction.
The Y and Z axes are horizontal, and chosen such that the transverse motion of
the sphere lies principally in the Y direction. In all cases, the sphere was released
four diameters before the start of the recorded trajectories shown here. A falling
sphere, with m∗ = 2.84, descended essentially vertically, with very small non-periodic
fluctuations. For a buoyant sphere with m∗ = 0.75, one would predict, based on
the map in figure 1, that vibration would occur. Instead, after undergoing a brief
initial transient, the sphere rose rectilinearly. This intriguing result demonstrates that
contrary to previous studies, rectilinear trajectories can occur for rising spheres, just
as they do for falling ones. Only when the mass ratio was reduced further, did the
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Figure 3. Lissajous and trajectories in the X–Y (side view) and Y–Z (top view) planes for
spheres at Re ≈ 10 000. (a) m∗ = 2.84; falling spheres descend vertically. (b) m∗ =0.75; a rising
sphere ascends with a rectilinear trajectory, following a short transient. (c) m∗ = 0.27; a very
light rising sphere undergoes large-amplitude periodic vibrations in a single plane. The end
of the release mechanism is located four diameters from the start of the trajectories shown
here. In all cases, it should be noted that the Y -axis of the trajectory is significantly expanded
relative to the X-axis, so that the actual transient motions in (a) and (b) are very small.

sphere suddenly began to vibrate vigorously. We show this distinct periodic zigzag
vibration for a sphere with m∗ =0.27 in figure 3(c). Such large-amplitude highly
periodic oscillations always occurred in a vertical plane, independently of how the
sphere was released.

The initial results from these experiments suggest that the regime of periodic
vibration occurs over a narrower range of mass ratio than previously thought.
This is further explored in § 3, where we employ spheres with many different mass
ratios to obtain a precise value for the transition between regimes. From amplitude
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measurements of these spheres, (all at Re ≈ 10 000, as in our example in figure 3)
we find a critical mass ratio separating rectilinear motion from periodic vibration at
m∗

crit = 0.61. We also relate the phenomenon of spheres oscillating as they rise to the
problem of vortex-induced vibration. Our previous studies (Govardhan & Williamson
2000, 2005) triggered our interest in the dynamics of freely rising and falling bodies,
such as cylinders (Horowitz & Williamson 2006, submitted), or the present case of
spheres. Initially, in this paper, we consider the effect of Reynolds number using
experiments at Re = 450. Here we find a distinctly lower critical mass, m∗

crit = 0.36,
than we did at Re = 10 000, where its value was 0.61. The dependence of the dynamics
on Reynolds number shown by these two cases is explored further, over the range
Re =100–15 000, where we map the regimes of motion that occur in the {m∗, Re}
plane in § 3.

Since the wake and body motion of a rising sphere will interact, one expects that
vibration will result in a different vortex wake mode than for the same body moving
rectilinearly, or held stationary in a free stream. Therefore, one may ask: What modes
of vortex formation exist for a vibrating freely rising or falling sphere?

Visualizations by Schmiedel (1928) and Schlieren images by Veldhuis et al. (2005)
and Veldhuis & Biesheuvel (2007) indicate the formation of vortex loops and stream-
wise vortex filaments in the wake of freely rising and falling spheres, but specific wake
modes comprising these structures have not been defined, or linked to particular types
of motion. However, patterns of similar vortex structures have been observed in other
similar flows. For example, single-sided chains of vortex loops are well documented
in the wakes of fixed spheres in experiments (Möller 1938; Sakamoto & Haniu
1990; Leweke et al. 1999; Brücker 2001; Gumowski et al. 2008) and in computations
(Johnson & Patel 1999; Mittal 1999; Tomboulides & Orszag 2000; Fabre, Auguste &
Magnaudet 2008). Tethered or elastically mounted spheres (Govardhan & Williamson
2005) and liquid drops (Magarvey & Bishop 1961a ,b) have also been found to shed
double-sided chains of vortex loops or rings. In the case of spherical or ellipsoidal
rising bubbles, for which both helical and zigzag oscillations have been observed,
the principal structure of the wake when the body vibrates is shown to be pairs
of counter-rotating streamwise vortices (Brücker 1999; Mougin & Magnaudet 2002).
(We also note that Jenny et al. (2004) compute the flow field around freely moving
spheres, where they present surfaces of the streamwise velocity. In the present context,
it is not clear how to deduce vorticity formation modes from such velocity surfaces,
though it is readily observed that periodic modes are found in their computations.)
Thus, there still exist distinct differences, among the different studies, regarding the
wake modes found for freely moving spheres. Further detailed visualizations and
vorticity measurements would be useful to precisely identify these patterns.

Some initial results of our flow visualizations, which provided motivation for a
more comprehensive study of rising and falling sphere wakes, are shown in figure 4.
These experiments were performed at Reynolds number, Re = 450, where the wake
is laminar and where visualizations are more readily achieved. The wake of a sphere
falling without vibration (figure 4a) appears to comprise a single-sided chain of vortex
loops, resembling the wake of a fixed sphere at comparable Reynolds numbers. A
very light rising sphere, however, exhibits a new mode of vortex formation (figure 4b).
In this mode, four distinct vortex structures are generated in each cycle of oscillation,
twice as many structures per cycle of motion as have been observed in the wakes
of fixed or tethered bodies. A preliminary investigation of this wake in (Horowitz &
Williamson 2008) provided evidence that these structures are vortex rings. In § 4, we
will provide a more detailed description of the structure and origin of this four-ring
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(a) (b)

Figure 4. Preliminary visualizations of wakes of rising and falling spheres at Re = 450. (a) A
falling sphere sheds a single-sided chain of vortex loops. (b) A new mode of vortex formation
for a vibrating sphere, rising through a fluid, with four distinct vortex structures created in
each cycle of oscillation.

‘4R’ mode, and present the vortex patterns found for the other regimes of motion.
These periodic wake modes are classified based on the number of vortex rings
produced per wavelength.

In § 5, we examine the effect of background disturbances on the sphere trajectories
and on the observed regimes of motion. After the conclusions are presented in § 6,
we present the appendices, comprising additional measurements of the amplitude,
wavelength and phase of vibration, in particular to highlight an apparent boundary
marking a change in the wake characteristics at Re = 1550. This is followed by a short
discussion of the use of the Galileo number to map the different types of motion.

2. Experimental details
Our experiments using freely rising and falling spheres were performed in two

vertical tanks with transparent walls. The larger of the two tanks had dimensions
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Figure 5. Schematic of the vertical tank and release mechanisms for a rising sphere. (a)
The sphere rests on a cylindrical platform connected to a syringe, which applies just enough
suction to keep it at the bottom of the tank. (b) The sphere is restrained inside a tube using a
rubber-tipped hook.

0.4 m × 0.4 m × 1.5 m, while the smaller tank measured 0.2 m × 0.2 m × 0.9 m. Both
solid and hollow spheres were used, and were constructed from aluminum and a
variety of plastics, including nylon, polypropylene, polystyrene, acetal and phenolic.
Their diameters D were between 0.2 and 3.8 cm. All of these bodies were highly
spherical. The largest deviated from perfect sphericity by no more than 1.0 %, while
the smallest deviated by no more than 1.5 %, as determined from multiple images of
each sphere viewed from different directions, using a camera with the lens mounted on
a long extension tube for high magnification. The Reynolds number was varied using
mixtures of glycerin and water to control the viscosity, ν. The viscosity was measured
with a Brookfield viscometer and monitored daily to account for temperature changes.
These measurements were compared to tabulated viscosity data, compiled by the
glycerin manufacturer for various temperatures and mixture fractions, and were
determined to be different by less than 5 %.

Buoyant rising spheres were gently restrained at the bottom of the tank and were
released from rest after the fluid had settled, typically two hours after previous
experimental runs (we shall later see that such time delay between experiments is
key to all our results presented in this paper). Two release mechanisms were used,
as shown schematically in figure 5. In the first mechanism, a syringe would apply a
small amount of suction to a tube on top of which the sphere would rest. The other
held the sphere mechanically inside a tube using a thin rubber-tipped hook. When the
hook was released, the sphere would rise out of the tube. Both mechanisms could also
be inverted and placed at the top of the tank for experiments using falling spheres.
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Video from two synchronized cameras placed at the front and side of the tank
allowed trajectories to be determined in three dimensions as a function of time.
From these trajectories, the amplitude, frequency, wavelength and terminal velocity
of the sphere were calculated. Frequencies of vibration were determined from the
trajectory data, and may be put as a normalized frequency parameter, F = f D/U .
This frequency F is inversely proportional to the normalized wavelength λ∗ = U/f D,
which is presented throughout the paper, and plotted specifically in Appendix A, for
example. The terminal velocity U was typically reached by a distance X/D ∼ 8 after
being launched, except for spheres exhibiting an initial transient motion, such as the
case shown in figure 3(b), where one may only reasonably define a mean rise or fall
velocity after the decay of the transient. All Reynolds numbers were calculated based
on the terminal velocity U , Re = UD/ν, where ν is the kinematic viscosity.

Flow visualizations for freely rising spheres were performed using a small cylinder
containing sodium fluorescein dye, placed at the bottom of the tank, through which the
sphere would rise after its release. Dye would be entrained in the wake of the sphere,
and then illuminated with a 5 W continuous argon ion laser. Additional visualizations
involved spheres undergoing a prescribed motion in a computer-controlled XY towing
tank. In these experiments, dye was painted onto the sphere prior to the experiment,
after which the sphere was slowly lowered into the tank. The towed sphere had a
diameter of 3.8 cm and was supported by a thin rigid rod with a diameter of 0.13 cm.

The sphere wakes were studied further in the towing tank using particle image
velocimetry (PIV). The fluid was seeded with 14 μm silvered glass spheres and
illuminated by a sheet of laser light. Images were acquired with a JAI CV-M2CL
video camera (1600 × 1200 pixels) at 30 frames s−1. Image pairs were correlated with
a two-step windowing process incorporating window shifting to determine particle
displacements, and in turn, velocity fields. For the first correlation, interrogation
windows of 64 × 64 pixels were used, with 32 × 32 pixel windows for the second
correlation. Typical velocity fields comprised 80 × 60 velocity vectors, using a window
overlap of 38 % in the second correlation. Further details pertaining to the particle
seeding density and to the implementation of the cross-correlation technique may
be found in Govardhan & Williamson (2000). Vorticity fields from individual runs
are presented in this paper for laminar flow Reynolds numbers, as well as for
turbulent flow (Re = 6000). In these cases, vorticity fields were phase averaged over
approximately 10 experimental runs to remove small-scale turbulent fluctuations,
while preserving the large-scale periodic structures.

3. Critical mass and regimes of motion
The preliminary experiments presented in § 1 showed that, contrary to earlier studies,

there exist some rising spheres that ascend in a rectilinear path, without vibration
or apparent chaotic motions. In this section, we determine the critical value of the
mass ratio, m∗

crit , at which trajectories switch from rectilinear motion to vigorous
periodic vibration as the mass is reduced, first at Re ≈ 10 000, and then at Re = 450.
We then consider the effect of Reynolds number on the sphere motion, in the range
of Re ≈ 100–15 000, and identify boundaries between the different regimes of motion
that exist in the parameter space of m∗ and Re.

3.1. Critical mass at Re ≈ 10 000

From the trajectories presented in figure 3, it is clear that a rising sphere undergoes
a transition from a vertical rectilinear trajectory to periodic vibration at some mass
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Figure 6. Critical mass for a sphere at Re ≈ 10 000. Above a critical value of the mass ratio,
m∗

crit = 0.61, all falling spheres and a wide range of rising spheres move rectilinearly. Below
the critical mass, the sphere vibrates vigorously. Time histories of the transverse displacement,
y∗ = y/D, are shown inset for selected mass ratios.

ratio between 0.27 and 0.75, at a Reynolds number of 10 000. By systematically
varying m∗ and measuring the amplitude of the horizontal (transverse) motion A∗

Y ,
we can determine the critical mass at which this transition between regimes occurs.
Based on the amplitude measurements presented in figure 6, we evaluate a critical
mass

m∗
crit = 0.61 ± 0.02, (3.1)

for Re ∼ 10 000. All spheres heavier than this critical mass move rectilinearly (with
a small amount of intermittent transverse motion when close to the critical mass).
Upon reducing the mass below m∗

crit , the sphere suddenly begins to oscillate with
a peak-to-peak amplitude around one and a half diameters (A∗

Y ≈ 0.75). In all of
the experiments where the sphere vibrated, the motion was confined to a single
vertical plane, even though the sphere was free to move in three dimensions. Three-
dimensional or ‘spiralling’ trajectories have sometimes been reported for rising spheres
(e.g. by Preukschat 1962), but the planar oscillations we observed were highly robust,
occurring for every experimental run, and with a consistent amplitude and wavelength.

In addition to the transverse oscillations evident from the trajectory of the vibrating
sphere in figure 3(c), the Lissajous figure shows that there also exists periodic
streamwise vibration, defined by an amplitude A∗

X , and at a frequency twice that
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of the transverse direction. Such streamwise motions have been reported for rising
cylinders (Horowitz & Williamson 2006, submitted), flat cylinders (Fernandes et al.
2007) and spheroidal bubbles (Mougin & Magnaudet 2006). Although this appears to
be the first time they have been observed for a spherical body, streamwise oscillations
should indeed be expected. These streamwise fluctuations are not immediately evident
from the trajectories, because they are considerably smaller than the mean vertical
velocity. Only in the Lissajous figure, in which the effect of the mean velocity is
removed, leaving solely the fluctuating part of the motion, do they become apparent.
This streamwise vibration is always found for spheres oscillating in the transverse
direction, appearing suddenly at m∗

crit .
The existence of a critical mass ratio, at which different regimes of motion are

separated by an abrupt jump, is not unique to rising and falling bodies. Such a
phenomenon has also been found in the case of elastically mounted and tethered
bodies undergoing vortex-induced vibration (VIV) transverse to a free stream
(Govardhan & Williamson 2000, 2002, 2005; Williamson & Govardhan 2004). It turns
out that an unrestrained freely rising body represents a special case of an elastically
mounted VIV system, one in which there is no stiffness or damping (Horowitz &
Williamson 2006, submitted).

To relate a rising sphere to elastically mounted VIV systems, we must first consider
its equation of motion,

mÿ = FY (t). (3.2)

Since the body vibration is synchronized with the periodic wake formation, the
displacement and force may be approximated as sinusoidal, with a frequency f . If we
normalize (3.2), we obtain

m∗ = −CEA. (3.3)

The quantity CEA is a non-dimensional apparent added mass, proportional to the
force in phase with the body acceleration according to

CEA = − 3

16π2

CY

A∗
Y

λ∗2. (3.4)

It includes contributions from the fluid force due to the dynamics of vorticity, as well
as an (ideal) added mass force arising from acceleration of the fluid around the body.
All vibrating spheres must satisfy (3.3). Therefore, vibration can only exist for mass
ratios below some maximum negative value of CEA. In other words, the critical mass
is given by

m∗
crit = [−CEA]max. (3.5)

The value of the apparent added mass CEA is dependent on the vortex dynamics.
Recalling that a rising sphere is a particular case of an elastically mounted sphere
undergoing VIV, it is possible evaluate [−CEA]max from measurements of such a VIV
system. For an elastically mounted body, the apparent added mass is defined as

CEA =
3

16π2

CY cosφ

A∗
Y

λ∗2, (3.6)

where φ is the phase between the force and displacement (note that if φ = 180◦, i.e. if
the force is in phase with acceleration, we obtain (3.4)). Generalized equations, such
as (3.6) can be found in Govardhan & Williamson (2005). Also in that paper, values of
CEA from elastically mounted sphere experiments were calculated, and are presented
in figure 7. These measurements indicate that [−CEA]max is between −0.55 and −0.65.
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Figure 7. Using the apparent added mass, CEA to evaluate the critical mass. Tethered and
elastically mounted spheres (Govardhan & Williamson 2005) have a maximum negative value
of −CEA ≈ 0.6, in good agreement with the critical mass of a rising sphere, m∗

crit = 0.61. �, freely
rising sphere, Re ≈ 8000–14 000; 	, tethered sphere, m∗ = 2.83, Re ≈ 3200–7800; �, elastically
mounted sphere, m∗ = 1.31, Re ≈ 10 000–23 000.

Therefore, from measured values of CEA, we predict a critical mass, m∗
crit = 0.6 ± 0.05.

This value is in remarkably good agreement with the critical mass obtained for freely
rising spheres at comparable Reynolds numbers, m∗

crit = 0.61 ± 0.02, in this study.

3.2. Critical mass and dynamics at Re =450

In this section, we begin our investigation into the effect of Reynolds number on the
dynamics of rising and falling spheres by studying the problem at Re = 450. Based on
observations of fixed spheres, the wake at this Reynolds number should be laminar,
and one might expect the dynamics to differ from the previous case of Re = 10 000,
for which the wake is turbulent. In essence, the value of CEA, and therefore critical
mass, is dependent on the vortex-induced forces, which are a function of Reynolds
number, so one expects some differences in critical mass for lower Re.

Amplitude measurements at Re = 450 indicate a critical mass m∗
crit = 0.36 ± 0.03, as

shown in figure 8. This value is distinctly lower than the one at Re = 10 000, where
we find m∗

crit =0.61, which confirms that the dynamics are dependent on Reynolds
number. One of the interesting results of the experiments at higher Re was the
discovery of rectilinear trajectories for rising spheres. With a smaller critical mass
at Re = 450, rising spheres will move rectilinearly over a greater regime of relative
densities.

Trajectories for the types of motion found at Re = 450, are shown in figure 9.
Unlike the higher Reynolds number case, spheres moving rectilinearly do not have
trajectories that are vertical. Instead, the trajectories are oblique, indicating that a
lift force with a non-zero mean is acting on the body. In the case of the lighter
vibrating spheres, the periodic zigzag motion resembles the dynamics at higher Re,
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Figure 8. The critical mass at Re = 450 occurs at m∗
crit = 0.36. This value is distinctly lower

than at Re ≈ 10 000 (where m∗
crit =0.61), indicating a clear dependence of the critical mass

on the Reynolds number. Periodic vibration: �, D =0.3 cm; �, D = 1 cm; �, D =1.3 cm; �,
D = 2 cm. Oblique, rectilinear motion: �, D = 0.5 cm ; �, D = 1 cm; 
, D = 1.3 cm; �, D = 2 cm.

always being confined to a single plane. Although it is well known that bubbles rising
through a liquid at comparable Reynolds numbers may move with helical trajectories
(see e.g. the review of Magnaudet & Eames 2000), we found no evidence of spiralling
motion in any experiment we conducted.

These results were found to be independent of the initial conditions. By adjusting
the inclination angle of our release platform, we could impart a small initial horizontal
velocity on the sphere. The trajectories shown in figures 9(e) and 9(f ) are for the
release mechanism angled at 0◦ (vertical) and at 20◦. Both cases exhibit the same
resulting zigzag motion. The only apparent effect of the initial conditions was to
determine the orientation of the vertical plane in which the light spheres vibrated.
Nor was the motion influenced by the sphere diameter relative to the tank dimensions.
Experiments using spheres with different diameters, but similar mass ratios, as shown
for example in figures 9(d ) and 9(e–f ), yield closely similar dynamics. This consistency
between different body diameters is also illustrated by figure 8, where different symbols
are used for each sphere size. While sphericity varied slightly for these experiments,
within the fine tolerances of the spheres used (between 1 and 1.5 % deviation from
perfect sphericity), there was no apparent effect on the motion.

Despite our imposed variation of the initial conditions and body diameter, the
vibration of the light spheres was extremely periodic. To demonstrate the clear
periodicity, we plot in figure 10 the measured time histories of the transverse
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Figure 9. Trajectories of rising and falling spheres at Re = 450. (a–b) m∗ =1.41; falling
spheres always descend in an oblique, rectilinear path. The two runs shown here demonstrate
the repeatability of this motion. (c) m∗ = 0.41; a rising sphere with an oblique trajectory.
(d ) m∗ = 0.11, D =1.3 cm. (e) m∗ = 0.08, D = 0.3 cm, release mechanism inclined at 0◦ from
vertical; (f ) m∗ = 0.08, D =0.3 cm, release mechanism inclined at 20◦ from vertical. In (d )–(f ),
we see highly periodic zigzag trajectories through the fluid, which are contained in a vertical
plane.

displacement, on top of which we have superposed an average precisely periodic
motion. The average motion was calculated by splitting the measured trajectory into
individual cycles (four to five cycles in the cases presented here in figure 10) and
taking their mean. At both Reynolds numbers shown in figure 10, the measured
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Figure 10. Time histories of transverse vibration compared to the average cycle of motion.
These time histories demonstrate the high periodicity of the zigzag regime, as the sphere shows
no sign of departing from the average motion over time. (a) Re = 10 000. (b) Re = 450.

transverse displacement always lies very close to the average cycle. The amplitude
remains essentially constant throughout the duration of the experiment; cycle-to-cycle
differences in the frequency are minimal. The motion shows no sign of drifting from
this average cycle, let alone undergoing an abrupt change in dynamics (which has been
reported in previous studies), and appears to be indicative of steady-state behaviour.

3.3. Regimes of motion in the {m∗, Re} plane

In our experiments on freely rising spheres at Re = 450 and 10 000, we find that the
Reynolds number has an impact both on the critical mass and on the types of motion
that occur. This effect, however, could not possibly be interpreted from the map of
previous studies shown in figure 1. In an effort to clarify the dynamics of spheres in
the {m∗, Re} plane, we have investigated 133 different combinations of mass ratio and
Reynolds number. The results of this study, presented in figure 11, are the product of
nearly 690 individual experimental runs. These experiments took a substantial period
of time to complete, if one considers the need to wait hours between runs, to vary the
viscosity of the fluid and the sphere diameters, and to ensure very carefully controlled
experimental conditions.

The solid symbols in figure 11 correspond to the ‘zigzag’ regime, in which the sphere
oscillates periodically in a vertical plane. The vibrating trajectories shown in figures 3
and 9 are typical of this regime, throughout which we only found motion in a plane.
Despite previous reports of ‘spiralling’ motion by Preukschat (1962), Shafrir (1965),
and others, no spheres within the range of parameters studied in this map moved in a
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helix. Amplitude and wavelength measurements for these experiments may be found
in Appendix A.

When the sphere does not vibrate, there exist a number of possible regimes,
depending on the Reynolds number. For Re < 210, the sphere rises vertically for all
mass ratios, as might be expected, since the wake of a stationary sphere at these
Reynolds numbers is axisymmetric. Following this vertical regime, spheres moving
rectilinearly at Re =210–600 have oblique trajectories, as in the cases shown earlier
in in figure 9(a–c). Around Re ≈ 600, the oblique motion becomes intermittent. The
shape of these intermittent trajectories approaches the vertical more closely as the
Reynolds number is further increased. At Re = 1550, the motion of the sphere becomes
vertical and steady. The trajectories in figure 3(a–b) are typical of this regime. These
transitions in the non-vibrating regimes are associated with changes in the wake of
the sphere, which will be discussed in § 4.2.

In contrast to the results compiled from the variety of sources shown in figure 1,
the present map shows a distinct boundary between spheres that vibrate periodically,
and those that do not. The line separating the zigzag regime from the rectilinear
ones indicates that the critical mass is approximately constant over two wide ranges
of Reynolds number. Vibration first occurs at Re near 260, slightly less than the
critical Reynolds number marking the onset of vortex shedding for a fixed sphere,
Re ≈ 275 (e.g. Sakamoto & Haniu 1990; Natarajan & Acrivos 1993). Over the range
Re = 260–1550, the critical mass has a value just below 0.4. At Re = 1550, it jumps to
m∗

crit ≈ 0.6, where it remains until Re ≈ 15 000, the upper limit of our experiments.
It should be emphasized that in all the rectilinear regimes and for intermittent

oblique trajectories, the motion never approaches the periodicity of the vibrating
spheres shown in figures 3 and 9, even in a transient sense. Thus, there always exists
a stark contrast between the vibrating and rectilinear regimes for the entire range of
Reynolds numbers studied. We also observe this distinction from measurements of
the mean drag coefficient, CD , shown in figure 12. At all Reynolds numbers, the drag
of spheres moving rectilinearly is nearly identical to the drag of a stationary sphere
at the same Re, falling on the lower curve, from the data of Wieselsberger (1921)
and Liebster (1927) compiled by Schlichting (1955). Vibration, however, results in
a drag coefficient that is typically twice as large as the stationary sphere case (the
upper curve). It should be mentioned that some of the variation of the drag of the
vibrating spheres may be attributed to the effect of the oscillation amplitude. Where
a larger degree of scatter exists, we find that lighter spheres, which tend to have
higher amplitudes, consistently exhibit greater drag, so there is a trend underlying the
apparent scatter. The relative clarity of this plot, exhibiting two clear regions, a low
drag corresponding with the steady sphere motion, and the high drag condition for the
zigzag trajectories, may be contrasted with the large scatter of data plotted earlier in
figure 2 from collected previous results, where it was difficult to determine any regimes.

4. Wake patterns in different regimes of motion
In this section, we will explore the wake modes that correspond to the regimes

of motion in the present map (figure 11). While the shedding of vortex loops has
been identified in previous studies of the wakes of freely rising and falling spheres,
there have been no descriptions of what periodic vortex formation modes may exist,
especially when there are interactions between the body motion and vortex formation.
We will show that the wakes of the rectilinear regimes tend to be similar to the wakes
of fixed spheres, as might be expected. Vibrating spheres, however, exhibit a new
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Figure 12. Mean drag coefficient for rising and falling spheres. The drag for spheres moving
rectilinearly is approximately equal to the stationary sphere drag. Vibration causes a significant
increase in drag. For Re > 1550, this increase tends to be higher for the lightest spheres, which
have larger amplitudes. Vibrating spheres: �, m∗ =0.0−0.2; �, m∗ = 0.2−0.4; �, m∗ = 0.4−0.6.
	, rectilinear trajectory; —, drag for stationary sphere from Wieselsberger (1921) and Liebster
(1927).

mode of vortex formation. The periodic vortex patterns that are observed will be
classified by the number of vortex structures produced per wavelength.

4.1. A new four-ring ‘4R’ mode of vortex formation for rising spheres in zigzag motion

The preliminary visualizations in figure 4(b), showed that for a vibrating sphere, four
vortex structures are formed in each cycle of oscillation. The evolution of this wake
as a function of time is shown in figure 13. Some of the structures here resemble
vortex loops or rings, but it is difficult to describe them more precisely. Certainly
the four structures (within a cycle) can be followed in time, and they are found to
move upstream under their own induced velocity, indicating that they may perhaps
represent vortex rings, although the dye marking each structure does not clearly
indicate a ring. This difficulty in determining the structures clearly is partly due to
the fact that the sphere used in this experiment had a diameter of only 0.2 cm, but
was rising with a velocity of 20 cm s−1 (and partly due to the different diffusivities
of the dye versus the vorticity). Such small sizes and high body velocities present a
fundamental challenge for studies of the wakes of freely rising or falling spheres at
low or moderate Reynolds numbers.

Our solution to this problem is to measure carefully the zigzag trajectory of a
freely rising sphere {x(t), y(t)}, and use that trajectory as an input into a computer-
controlled XY towing tank. In the towing tank, we can prescribe a trajectory identical
to that of the rising sphere, but use a much larger body (D = 3.81 cm) towed at
a significantly lower velocity (U ≈ 1 cm s−1), while maintaining the same Reynolds
number. We need make no assumption of sinusoidal motion; we use whatever the
measured trajectory yields. This novel technique, in this problem, greatly enhances the
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Figure 13. A new mode of vortex formation for a vibrating sphere comprising four vortex
rings shed per cycle of oscillation. The sphere, located at the top of (a), has risen out of the
frame in the next two images (b–c) taken approximately one and three periods (t/T ≈ 1, 3)
later. m∗ =0.08, Re = 450.

spatial and temporal resolution of our visualizations, allowing detailed visualization
of the wake structures and their evolution, as well as measurements of vorticity. The
effectiveness of using the towing tank is illustrated in figure 14, where we examine
the structures formed in a single cycle of oscillation for a freely rising sphere, and
for a sphere undergoing controlled motion. Despite the very different scales (typically
2 cm across the wake for the rising body, as opposed to 40 cm for the sphere in the
XY towing tank), the pattern in both cases is identical, but the wake of towed sphere
shows far more detail.

In this wake pattern, two structures are formed in each half-cycle: a larger, ‘primary’
structure near the peaks of the sphere motion, and a ‘secondary’ structure located
near the centreline, labelled in figure 14. In figure 15, we focus on the evolution of the
primary structure, viewed in a direction parallel to the Y -axis. Initially, the primary
structure is shed as a vortex loop that rolls up from the sphere in figure 15(a–b). The
legs of this loop comprise a counter-rotating vortex pair seen in figure 15(c–d ). As
the vorticity convects downstream relative to the body, the head of the loop begins
to pinch off in (e–f ), resulting in a structure which resembles a vortex ring, except
that the two sides of the structure do not appear to reconnect fully.

To determine the evolution of the vortex structures accurately, vorticity
measurements are needed, since the rate of diffusion of dye (with molecular diffusivity,
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Figure 14. Comparison of the wakes of rising and towed spheres with identical motion. (a)
Wake of a vibrating freely rising sphere, m∗ = 0.08, sphere diameter = 0.2 cm. (b) Wake of a
towed sphere controlled to move with the same trajectory, sphere diameter = 3.8 cm.

C) and of vorticity are quite different here. The Schmidt number Sc = ν/C, relating
these diffusion rates, is around 1200 (Quinn, Lin & Anderson 1986), meaning that
the more rapidly diffusing vorticity may be present even where there is no dye.
Employing PIV, we place the light sheet coincident with the (X–Y ) plane of symmetry
(figure 16), passing through the region of the primary structure where no dye is
visible. Despite the absence of dye between the vortex pair at the location of the
‘pinch-off’, our PIV measurements (figures 17 and 18) reveal the development of
highly concentrated vorticity in this area. If we now look at figure 17, initially, the
strength of the vorticity in the region with no dye is distinctly weaker, as in the
region of red, anticlockwise vorticity at X/D =9 (primary structure marked with a
*). Further downstream, the circulation of the positive and negative vorticity regions
(marked with a **) become approximately equal. At this point, the circulation around
the entire primary structure is the same, as seen from additional PIV measurements
in the X–Z plane in figure 18(a), which confirm the formation of the ring.

In a similar manner, the secondary structure is created as the trailing vortex
pair pinches off to form an additional vortex ring in each half-cycle, shown in
figure 18(b). Preceding the formation of the secondary structure, the two counter-
rotating streamwise vortices cross over one another. As they do so, they pass through
the laser sheet and are visible in figure 17 between each primary structure and the
secondary structure immediately downstream. This crossover provides a mechanism
for the change in sign of the streamwise vortex pair as the body moves from one
half-cycle of oscillation to the next.

It is the creation of the additional secondary structures that differentiates the present
four-ring pattern from all previously observed sphere wakes, but thus far, it is unclear
why the secondary structure occurs. With the ability to control the body motion
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Figure 15. An enlarged view of the evolution of the primary structure, from a vortex loop
into a vortex ring. The sphere, visible in (a), moves in the upward (+X) direction and
vibrates normal to the X–Z plane (towards and away from the viewer). Images taken at times
t/T = {0.0, 0.1, 0.2, 0.3, 0.5, 0.8}. Re = 450.

in a towing tank, it is possible to prescribe trajectories that differ slightly from the
actual path of the rising sphere, and to study how these minor changes in the motion
affect the wake. A feature of the oscillating sphere’s motion that we observed from the
Lissajous figures is the existence of streamwise vibration. The amplitude of streamwise
vibration is quite small in this case, typically as low as A∗

X = 0.04, which corresponds
also to an amplitude of the rising velocity of only about 3.6 %. Even though these levels
of streamwise vibration are small, we ran an experiment for which the streamwise
vibration is made equal to zero; we expected its influence to be negligible. Surprisingly,
this small amount of streamwise vibration has a significant impact on the wake
pattern. An image of the secondary structure for an experiment with streamwise
vibration, is shown in figure 19(a). However, when A∗

X is set to zero (figure 19b), the
secondary structure disappears. It appears that the secondary vortex ring is caused
by the streamwise body vibration, sufficient to trigger the sensitive counter-rotating
vortex pair to pinch off along its length midway between primary structures.

The four-ring mode of vortex formation found at Re =450 persists throughout the
regime of zigzag vibration. Its existence at higher Reynolds numbers is confirmed by
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Figure 16. Schematic of PIV light sheet orientation to determine vorticity in the X–Y plane.
The dye photograph is viewed from the Y direction, as in figure 15.

the dye visualizations and PIV for Re = 6000 in figure 20. As the Reynolds number is
varied, a primary structure and a secondary structure are formed in each half-cycle,
however, their relative spacing may differ with changes in the wavelength.

The process of pinching off and reconnection to form vortex rings that we have
described here is similar to the one observed in other studies of the wakes of spherical
bodies. The numerical simulations of Mittal (1999) and Mittal, Wilson & Najjar
(2002) have provided evidence for the formation of vortex rings, originating as a
single-sided chain of vortex loops in the wake of a fixed sphere at 500 <Re < 1000.
In the case of a tethered or elastically mounted sphere, measurements of vorticity by
Govardhan & Williamson (2005) show a double-sided chain of vortex loops, which
began to pinch off into rings. Magarvey & Bishop (1961a ,b), in their dye visualization
study for falling liquid drops, also found a double-sided vortex loop wake, evolving
into what might be interpreted as two vortex rings per wavelength, a pattern which
Goldburg & Florsheim (1966) reported that they observed for falling solid spheres.
While the vortex rings in these other flow configurations are similar to the structures
in the present pattern, fewer rings are formed per cycle. Since wake modes with
various numbers of vortex rings are possible, a method of classifying these patterns
may prove useful. Such a classification was developed for oscillating cylinders by
Williamson & Roshko (1988), who, for example, defined two single vortices shed
per cycle as the ‘2S’ mode, and two counter-rotating vortex pairs as the ‘2P’ mode.
As new patterns for cylinder wakes were discovered, this terminology was easily
extended, as in the case of two vortex triplets, a ‘2T’ mode (Jauvtis & Williamson
2004), and of two co-rotating vortex pairs, a ‘2C’ mode (Flemming & Williamson
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Figure 17. Vorticity measurements of the four-ring wake pattern for a vibrating sphere. The
sphere, whose motion is controlled in a towing tank, is moving upwards and is located at the
top of the image. Contours of vorticity are ωD/U = ± {0.15, 0.30, 0.45, . . .}. Re = 450.

2005). Using similar nomenclature to Williamson & Roshko (1988), we will refer to
the new four-vortex-ring wake mode for the rising sphere as the ‘4R’ mode. Further
periodic vortex patterns in this paper, similarly comprised of vortex rings, will also
be defined according to this convention.

It should be noted that the only difference between the trajectories we prescribe in
the towing tank and the motion of a rising sphere is that the freely moving body also
has the ability to rotate. To examine the possibility of rotation, we considered two
examples of vibrating spheres, at Re = 450 and at Re = 10 000, both with m∗ ≈ 0.33. On
the surface of these spheres, we drew a grid of latitude and longitude lines. From video
of the sphere’s motion, the movement of the gridlines allows the amount of rotation
to be determined. For Re = 450, we observed periodic rotation with an amplitude
of 14.7◦ in the Z direction (about an axis normal to the plane of vibration), acting
over the same long wavelength as the transverse vibration (λ∗ ≈ 14). This amount
of rotation corresponds to an angular acceleration, dΩ/dt , with an amplitude of
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Figure 18. Views of the (a) primary and (b) secondary structures of the 4R mode in the X–Y
and X– Z planes. (c) The two planar views of the primary structure in (a) are also arranged
in three-dimensional space, with an orientation corresponding to the schematic in figure 16.
Contours of vorticity are ωD/U = ± {0.15, 0.30, 0.45, . . .}. Re = 450.

73 rad s−2, occurring due to a torque, T = JdΩ/dt , generated by the wake, where J

is the moment of inertia (in the present case, J = 2.9 × 10−9 kgm2). Normalizing our
torque measurements according to

CT =
T

π

8
ρU 2D3

, (4.1)

yields CT = 1.8 × 10−3. While this is larger than the torque computed by Bouchet,
Mebarek & Dušek (2006) for a stationary sphere at Re = 325, CT =4.9 × 10−4, it
is considerably smaller than the value for a zigzagging oblate spheroidal bubble
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(a) (b)

Figure 19. Dependence of the secondary structure on streamwise vibration. (a) Motion
controlled to match exactly the measured rising sphere trajectory. A∗

X = 0.04. (b) The same
motion, except streamwise amplitude set to A∗

X = 0. Re = 450.
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Figure 20. The existence of the 4R mode at turbulent Reynolds numbers (Re = 6000).
Contours of vorticity are ωD/U = ± {0.1, 0.2, 0.3, . . .}.

(Mougin & Magnaudet 2006), where CT = 5.9 × 10−2 at Re ≈ 790, Ga = 390. In the
present case, the small torque and rotation rate suggest that the absence of a rotational
degree of freedom for the towed body is unlikely to produce a significantly different
wake than for the rising sphere, some confirmation of which is provided by the flow
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Figure 21. The R mode for the oblique regime. (a–b) Dye visualizations using laser-induced
fluorescence (LIF) in the X–Y and X–Z directions. (c) Vorticity measurements from PIV.
Contours of vorticity are ωD/U = ± {0.2, 0.4, 0.6, . . .}. Motion controlled in a towing tank.
Re = 450.

visualization results in the two facilities (figure 14). In the case of Re = 10 000, we
observe no measurable angular rotation of the sphere. It appears from our study that
observable levels of rotation might only be found at lower Re.

4.2. Wake modes for non-vibrating spheres

Since their paths through the fluid are essentially in a straight line, the wakes of freely
moving spheres with rectilinear trajectories should closely resemble those of spheres
in a free stream. As such, the wakes of the fixed bodies will provide useful insight
into the vortex dynamics of the freely moving bodies. For example, in the regime of
vertical trajectories that exists below Re = 210, the fixed sphere wake is known to be
axisymmetric (e.g. Natarajan & Acrivos 1993). The wake is therefore unable to exert
any side force on the sphere to make it deviate from a vertical path. We will now
consider the other non-vibrating regimes that occur as Reynolds number is increased.

The regime of oblique trajectories in figure 11 includes spheres of any mass ratio
when the Reynolds number is between 210 and 260. This range roughly corresponds to
Reynolds numbers where the wake of a fixed sphere is a counter-rotating vortex pair
(Re = 210–275), which will produce a constant lift force in one direction transverse to
the flow. When the body is unrestrained, this constant side force results in an oblique
trajectory. After the onset of vortex shedding, a sphere in the oblique regime sheds a
single-sided chain of vortex loops, shown in figure 4. Since the orientation of all the
vortex structures is the same, a mean lift force on the sphere is generated, which has
been measured for a fixed sphere with the same wake pattern by Johnson & Patel
(1999). As shown by the PIV measurements in figure 21 for a towed sphere, the vortex
loops develop into vortex rings, forming what we define as an ‘R’ mode, with one
vortex ring formed per wavelength of wake formation.
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Figure 22. Variation in inclination angle of rectilinear trajectories with Reynolds number
for spheres with m∗ > m∗

crit . Beyond Re ≈ 450, the angle of the oblique trajectories decreases
rapidly, due to the irregular vortex shedding orientation. A typical trajectory is shown for the
unsteady regime. m∗ = 0.55–0.67.

Studies of fixed spheres indicate that this periodic vortex shedding continues
until a Reynolds number around 420–500 (Sakamoto & Haniu 1990; Lee 2000;
Tomboulides & Orszag 2000; Kim, Choi & Choi 2005), after which the vortices
are shed with varying orientation. Simulations by Mittal et al. (2002) show that, at
first, some preferred orientation of the shedding remains, but it diminishes as Re is
increased. A similar phenomenon occurs for the freely moving sphere, and is suggested
by the variation of the angle of the trajectories with Reynolds number (figure 22). At
Reynolds numbers greater than around 600, the sphere path changes from oblique
and rectilinear, to motion which is only intermittently oblique. This change is caused
by the switch from the periodic ‘R’ mode, in figure 23(a) to a non-periodic mode
in 23(b), where we find temporal variation of the orientation of the shed vortex
rings. Increasing the Reynolds number in the intermittent oblique regime causes the
shedding orientation to become more random (figure 23b–c), as it does for the fixed
sphere. This trend resembles that of the fixed body, however, the Reynolds number
at which it occurs is higher, Re = 600.

Although the regime of unsteady motion somewhat resembles the ‘chaotic’
trajectories described by Jenny et al. (2004) for Re ≈ 260–550, there are several
important differences. At the Reynolds numbers where Jenny et al. (2004) report
that chaotic motion occurs, we only find oblique and zigzag trajectories, for which
the wakes are periodic patterns of vortex rings. Only at higher Reynolds numbers,
between 600 and 1550, do we find intermittent motion. Even then, the wake structure
(figure 23b) in the intermittent oblique regime still appears to comprise a sequence
of vortex loops evolving into vortex rings, consistent with the wake modes of a fixed
sphere.

When the Reynolds number reaches 1550, the wake once again becomes periodic,
with vortex rings being shed from alternate sides of the sphere, as shown for a
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(a) Re = 450 (b) Re = 620 (c) Re = 1200 (d) Re = 1800

Figure 23. Wakes of freely falling spheres. (a) Re = 450. The periodic R mode occurs in the
oblique regime. (b) Re =620. In the unsteady regime, the orientation of shed vortex rings
varies. (c) Re = 1200. The randomness of the wake in the unsteady regime increases with Re.
Due to the absence of a strong preferred shedding orientation, the trajectory is essentially
vertical. (d ) Re = 1800. The wake changes to the periodic 2R mode.

falling body in figure 23(d ) and for a towed sphere in figure 24 (which also includes
some measurements of vorticity). The appearance of this periodic mode signals the
beginning of a regime of vertical trajectories, and persists to the maximum Reynolds
number studied here. There exist some differences in the reported Reynolds number
at which the wake of a fixed sphere becomes a two-sided pattern. Sakamoto & Haniu
(1990) state that it appears at Re = 800 in their experiments, considerably earlier than
in the present study. However, simulations by Tomboulides & Orszag (2000) and
Mittal et al. (2002) suggest that the 2R mode begins later. They find that the irregular
shedding persists to at least Re = 1000.

The apparent transition at a Reynolds number of 1550 involves a jump in amplitude
in the zigzag regime, and a jump in wavelength in the non-vibrating regime, as
indicated by the plots and contours in Appendix A.

4.3. Suggestion of a physical mechanism leading to the transition at Re = 1550

The existence of a transition in the wake at Re = 1550 triggers a fundamental question:
Why does the wake settle into a more periodic 2R two-sided vortex mode, yielding
vertical sphere trajectories, at some particular Reynolds number? In other words,
is there some mechanism that encourages the wake to become more organized around
Re =1550?
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Figure 24. The periodic 2R wake mode for a sphere in controlled rectilinear motion.
Contours of vorticity are ωD/U = ± {0.1, 0.2, 0.3, . . .}. Re = 6000.

Since the sphere trajectories are straight and vertical, we naturally consider the fixed
sphere wake. One should recall that there are two instabilities in the near wake of a
sphere, just as there are in the cylinder wake (first highlighted by Bloor 1964). Not
only is there an instability based on the dimensions of the body, in this case giving
the low frequency of the vortex loops (floop), but there exists a ‘Kelvin–Helmholtz’
instability which develops in the separating shear layer coming off the sides of the
body, giving a frequency fSL for the instability waves. The latter instability scales on
the typically thin separating shear layer thickness, giving a higher frequency than that
for the vortex loops, fSL >floop . Measurements of a higher frequency detected in the
sphere wake have been made by Kim & Durbin (1988) and by Sakamoto & Haniu
(1990), over a wide regime of Reynolds numbers. The point being made here is that
it seems conceivable that the development of the more periodic 2R mode at around
Re = 1550 could reflect an interaction between these two instabilities, a possibility
that we now explore. Further research would be necessary to confirm the suggested
ideas we now put forwards.

One might first consider the functional relationship between the shear layer
frequency and the vortex loop frequency. To be brief, we follow the reasoning
found in Bloor (1964), and also in Prasad & Williamson (1997), for the cylinder wake,
where it is suggested that the shear layer frequency will scale on the velocity near the
separation point, and the thickness of the separating shear layer (laminar boundary
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layer), which yields

fSL

floop

∼ Re1/2, (4.2)

which is equivalent to what Bloor (1964) put forwards for the cylinder instabilities.
This frequency ratio of the instabilities was revisited by Prasad & Williamson (1997)
for the cylinder wake, and by noting that in fact the instability scales on the free
shear layer thickness downstream of the body (as well as other considerations) they
were able to deduce a power law, which actually fit the compiled data of almost all
previous investigations much closer than the classically assumed 0.5 power law:

fSL

fK

= 0.0235 × Re0.67, (4.3)

where in this case fK is the Kármán vortex frequency. Such an analysis for the sphere
has not been performed, despite the fact that extensive frequency measurements for
the instabilities have existed for 20 years.

We have therefore digitized the shear layer frequency and loop frequency data
sets from the papers of Kim & Durbin (1988) and Sakamoto & Haniu (1990), and
approximately deduced the ratio between instability frequencies, plotting the results
in figure 25. We now find a new power law fit to all the data

fSL

floop

= 0.0050 × Re0.83. (4.4)

Such an instability frequency relation has not been deduced before for the sphere.
This relationship may also relate to the incipience of the 2R mode around Re = 1550,

and the existence of our regime boundary shown in the map of sphere vortex modes.
If we look now at figure 25(b), we find that the Reynolds number where the shear
layer frequency is double the loop frequency is given by Re ≈ 1350,

fSL

floop

≈ 2 at Re ≈ 1350,

which is of the same order as the Reynolds number for the incipience of the periodic
2R mode Re =1550. It seems conceivable that in this regime of Reynolds number,
there is a resonance between these two vortex instabilities, which would have the effect
of providing more order, and more periodicity, to the otherwise more intermittent
vortex loop formation. In our case here, free stream turbulence may contribute to
the uncertainty concerning the Re where the two-sided vortex loop mode has been
reported.

Physically, a resonance of the two instabilities could be imagined as follows. An
evolving vortex loop on one side of the sphere wake close to the body would represent
(as far as the shear layer instability is concerned) the formation of one shear layer
vortex (which would initially take the form of a vortex ring around the near wake
of the sphere). By symmetry, in the next half-cycle, one expects the next opposite
signed vortex loop to evolve from another shear layer vortex (or the next vortex ring
close to the body). For this phenomenon to occur, the frequency ratio is necessarily:
fSL = 2floop . Of course, this is only a suggested mechanism for the transition to
organized vortex formation at Re ∼ 1500, but it seems conceivable that a resonance
might occur.
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Figure 25. The ratio of the shear layer and vortex loop frequencies for a fixed sphere. (a) The
normalized shear layer frequency is estimated as fSL/floop = 0.0050 × Re0.83, from a best-fit
to the frequency data of Kim & Durbin (1988) and Sakamoto & Haniu (1990). (b) The
frequency of shear layer vortices becomes twice the frequency of shed vortex loops around
Re = 1300. The proximity to the Reynolds number where the 2R mode appears for a falling
sphere, Re =1550, suggests that the onset of the 2R mode may be associated with a resonance
between the shear layer and vortex loop frequencies.

5. Zigzag trajectories, helical motions and background disturbances
It should be pointed out that careful control of experimental conditions is essential

in order to observe the dynamics described in this paper, in particular the rectilinear
regime for rising spheres, which we shall now illustrate here. A central point is that we
find spheres, with mass ratios somewhat greater than the critical value, are sensitive
to small disturbances in the fluid, which can induce large non-periodic motions. In
our study, we conclude that the disturbances in the fluid can be minimized by using
a large settling time between experiments (at least 2 h) to allow the fluid in the tanks
to become closely quiescent.
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Figure 26. Effect of settling time on sphere motion. (a) Settling time =120 min. The sphere
rises rectilinearly through the quiescent fluid, following a brief transient. (b) Settling time=
20 min. Disturbances remaining in the fluid induce large random transverse motions. The
same sphere was used for both experiments. m∗ =0.75, Re = 9500. (c) Settling time unknown
(Preukschat 1962). m∗ =0.78, Re = 6000. (d ) Settling time= 2-3 min. (Shafrir 1965). m∗ = 1.4,
Re = 6000.

As an illustrative example at this point, we observe the case of a rising sphere in
the vertical rectilinear regime in figure 26(a), where the fluid is given the customary
2 h to settle. Following an initial transient that is quickly damped out, the sphere rises
vertically. However, when the settling time is reduced to 20 min, we find considerable
irregular motion throughout the rising trajectory in figure 26(b), presumably as the
sphere is affected by disturbances in the fluid. These motions, however, are non-
periodic, which is especially apparent when viewing from the top of the tank. The
high degree of periodicity for the regular zigzag regime (illustrated for example in
figure 9) indicates that any irregular motions due to a low and insufficient settling
time, as shown in this example here, are quite distinct from (and should not be
mistaken for) zigzag vibrations.

This result also suggests that one would not expect to find evidence of rectilinear
trajectories for rising spheres if a low settling time is used. Indeed, our irregular motion
(found for low settling times) appears qualitatively similar to several trajectories from
previous studies that were classified as vibrating, even though the mass was higher
than the critical values measured in this paper. One example is the path of an often
quoted ‘spiralling’ sphere (m∗ =0.78, Re = 6000) from Preukschat (1962), shown in
figure 26(c). The settling time for this experiment is not specified, and it is only
stated that ‘spheres were released one at a time’. Similarly, Shafrir (1965) reports
‘slightly corkscrew’ trajectories for his experiments using falling spheres, like the one in
figure 26(d ), where he allowed ‘usually 2–3 min’ for the water to settle. The resemblance



284 M. Horowitz and C. H. K. Williamson

between these trajectories and our case with low settling time suggests that the amount
of time between experiments may account for previous reports of vibration for spheres
substantially heavier than the critical mass reported here, and would largely explain
the disagreement amongst the reports of body dynamics discussed in the Introduction.

We also note that the trajectories of Preukschat (1962) and Shafrir (1965) are
not spiralling. These apparently random motions are distinctly different from the
nearly perfect spiralling paths of rising bubbles (Mougin & Magnaudet 2002; Wu &
Gharib 2002). To our knowledge, there has been no clear evidence in the literature for
spiralling or helical trajectories for rising or falling solid spheres. One might suggest
that such helical motions (for Re > 270) would not be compatible with the induced
fluid forces coming from unsteady vortex loops and rings shed from the sphere, since
such a wake may not be able to provide the steady centripetal force required for a
spiralling path.

6. Concluding remarks
In the present paper, we study the body dynamics and vortex wake patterns of

spheres rising or falling freely through a fluid. Despite the number of studies that have
considered this problem, beginning with Newton (1726), the fundamental question of
when a rising or falling sphere will vibrate has not been clearly answered. Previous
works have been confined to limited ranges of mass ratio and Reynolds number, and
there clearly exists some disagreement as to when vibration occurs, and what types
of motion exist. In this work, we systematically define the regimes of body motion
and vortex wakes, over a wide range of mass ratio (m∗) and Reynolds number (Re),
for the first time. We also measure the sphere drag, which is of course related to the
modes of body dynamics.

Perhaps the most fundamental question that may be asked is: when will a rising or
falling sphere vibrate? While addressing this question, we demonstrate the existence
of a critical mass ratio, below which there is a regime of highly periodic zigzag
vibration, and above which spheres move essentially rectilinearly, either vertically or
at some oblique angle to the vertical. Initially, we illustrate two cases in detail, one for
a low Reynolds number (450) exhibiting laminar wake flow, and one for a higher Re

(10 000), involving turbulent wake flow. We find the critical mass ratio for Re =450
to be m∗

crit = 0.36, and for the higher Re = 10 000, we find m∗
crit = 0.61. Thus, there is

clearly some influence on the critical mass coming from Reynolds number, as one
would expect. These values are typical of two wide regimes of Reynolds number,
within which the critical mass remains reasonably constant, as follows:

m∗
crit ≈ 0.4, Re =260 − 1550,

m∗
crit ≈ 0.6, Re = 1550 − 15 000.

In contrast to previous studies, in which vibration, either periodic or ‘chaotic’, is
reported for all buoyant spheres (where m∗ < 1), we find that there always exists a wide
regime of mass ratios for which rising spheres ascend without oscillation. The existence
of rectilinear motion for a regime of rising spheres, corresponds well with predictions
of the critical mass based on previous vortex-induced vibration experiments with
elastically mounted spheres.

In order to define the various dynamics and wake modes that exist for rising and
falling spheres, we study 133 different combinations of Reynolds number and mass
ratio, for which we perform nearly 690 experimental runs. One of the principal results
of this work is the map of regimes of motion and vortex dynamics we present in
figure 27, here in this section. At the lowest Re, all spheres move vertically, with
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an axisymmetric wake. As the wake changes to a trailing vortex pair at Re = 210,
it produces a steady side force on the body, which causes the sphere to move at
some oblique angle to the vertical. The character of the body motion first becomes
dependent on the mass at Re = 260, when spheres lighter than m∗

crit =0.36 begin to
vibrate. The periodic zigzag motion for these bodies corresponds to the discovery of a
‘4R’ wake formation mode, comprising four vortex rings formed in each cycle of body
motion. The critical mass remains fairly constant until we observe several distinct
changes to the wake and dynamics at Re = 1550, after which the critical mass jumps
to a value m∗

crit ≈ 0.6. The vortex wakes of spheres with zigzag trajectories, in this
turbulent wake regime, continue to exhibit principally the ‘4R’ vortex wake pattern.

In the case of heavier spheres above the critical mass (m∗ >m∗
crit ), over the regime

Re = 270–600, we find trajectories at some oblique angle to the vertical, shedding a
single-sided chain of vortex rings, which we define as the ‘R’ mode. Beyond Re = 600,
the oblique motion becomes intermittent, whereby the vortex rings in the body wake
are shed with different orientations, becoming increasingly irregular as Re increases
further. However, as noted also for the light spheres, there is a transition Reynolds
number of 1550, beyond which the shedding mode for heavier spheres changes to the
periodic ‘2R’ mode, comprising a double-sided chain of vortex rings (i.e two vortex
rings formed per cycle of body motion).

The structure of these periodic shedding modes are obtained using both dye
visualizations, and vorticity measurements using PIV. It is only by using a technique
of precisely replicating the motion (and matching the Reynolds number) of freely
rising and falling spheres using a computer-controlled XY towing tank that we are
able to study these wakes with much higher spatial and temporal resolutions. However,
it is still difficult to visualize the three-dimensional structure of these wake patterns
from two-dimensional images. We therefore now display the structure of the wakes
using three-dimensional renderings of each mode. In the case of the 4R mode, the
position of the streamwise vortex filaments is determined from dye visualizations, as
illustrated by figure 28. The vortex rings, whose evolution is not captured fully by the
dye, are defined with the help of vorticity fields from PIV (their size and orientation
are approximately based on the contour of vorticity ωD/U = ± 0.2). We now employ
the same approach to visualize, in figure 29, the three-dimensional structure of all
three modes in the family:

{R, 2R, 4R}.
Obviously, a full measurement of vorticity, throughout a large volume of fluid
simultaneously, would render a more accurate family of wake pattern images, but
the approach here represents the principal features of the three vortex modes in the
family.

Finally, in this paper, we have been able to collapse the drag force measurements
onto two approximate curves when plotted as a function of Reynolds number. The
lower drag curve corresponds with the rectilinear trajectories, while the other curve
with the markedly higher drag represents the zigzag regime of body oscillation. This
collapse of data is possible in the presence of minimal background disturbances,
which has an effect on the body dynamics, and in turn, as noted by Newton in 1726,
has a distinct effect on the mean speed of the sphere, and thereby its drag.

The support from the Ocean Engineering Division of ONR, monitored by Dr
Tom Swean, is gratefully acknowledged (ONR Contract No. N00014-04-1-0031 and
N00014-07-1-0303). The authors would also like to thank Tim Morse and for his
extremely helpful input to this research, Paolo Luzzatto Fegiz for his expertise and
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Figure 28. Creation of a three-dimensional rendering of the 4R mode. The positioning of the
streamwise vorticity structures is determined from the dye visualizations. The location and size
of the vortex rings are based on data from PIV measurements, and approximately represent the
vorticity contour ωD/U = ± 0.2. The colour corresponds to the initial sign of the streamwise
vorticity component: positive vorticity is shown in red, negative vorticity is shown in blue.

Chris Pelkie for his enthusiastic help in performing the three-dimensional image
analysis.

Appendix A. Amplitude and wavelength measurements for rising
and falling spheres

In Appendix A, we present further detailed measurements defining the sphere
trajectories as a function of Reynolds number and mass ratio. One central purpose
in providing this detailed data is to make clear that the transition at Re ∼ 1550 is a
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R mode 2R mode 4R mode

Figure 29. The family of periodic wake modes for rising and falling spheres. These
three-dimensional visualizations are created following the approach shown in figure 28.

real phenomenon. We focus on the transverse amplitude, A∗
Y and the wavelength of

the trajectory λ∗ for spheres in the zigzagging regime, and also include measurements
of the streamwise amplitude A∗

X .
We present the amplitude, wavelength and phase (between the transverse and

streamwise oscillations) for a vibrating sphere in figure 30, where we have chosen
mass ratios: m∗ = 0.30−0.38. This may be considered a (nearly) horizontal cut through
our map of regimes in figure 11, in contrast to the amplitude plots used to determine
the critical mass (e.g. figures 6 and 8), which correspond to vertical (constant Re) cuts
through the parameter space. Two spheres with different diameters are studied, with



Dynamics of rising and falling spheres 289

0

0.4

0.8

1.2

A*

λ*

θXY

m* = 0.30–0.38

0

5

10

15

20

Re

–20

–10

0

10

20

30

10 0001000200

Transverse (A*
Y )

Streamwise (A*
X )

Figure 30. Variation of transverse amplitude (A∗
Y ), streamwise amplitude (A∗

X), wavelength
(λ∗) and phase (θ ) with Reynolds number for (approximately) constant mass ratio. Distinct
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were used: �, �, D = 1 cm, m∗ = 0.32−0.38; �,	, D = 2 cm, m∗ = 0.30−0.34.

the Reynolds number being varied by changing the concentration of a glycerin-water
mixture (which results in a small increase in mass ratio as Re increases, yielding m∗ =
0.32–0.38 and m∗ = 0.30–0.34 for the two spheres used here). As Reynolds number
increases from Re = 300, the wavelength λ∗ decreases slowly, while the amplitudes
rise. The phase between the transverse and streamwise vibration (θXY ) appears to
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vary continuously with Re, but always remains close to 0◦. The amplitudes reach
maximum values of A∗

Y ≈ 1.10 and A∗
X ≈ 0.17 just prior to Re =1550, after which

there is a distinct drop in the amplitude and wavelength. This decrease coincides with
the jump in critical mass from 0.4 to 0.6, and with the appearance of the 2R mode,
further emphasizing the significance of this transition Reynolds number.

We may also plot contours of amplitude (A∗) and wavelength (λ∗) in the m∗, Re

plane, in figure 31. A consistent trend exists for the wavelength: λ∗ always decreases
as the mass ratio is reduced or as the Reynolds number is increased. In the case of
amplitude variation in figure 31, for the lowest Reynolds numbers (Re = 270–500),
the nearly vertical orientation of the contours shows that the amplitude is affected
mainly by Re. At higher Reynolds numbers (Re > 3000), however, the contours are
mostly horizontal, indicating a stronger dependence on the mass ratio. Here, the
lightest spheres have the largest amplitudes. For spheres that move rectilinearly, the
amplitude of any small transient motions can be measured. At all Re, there is a large
jump in the amplitude as the critical mass is crossed, clearly separating zigzag motion
from the non-vibrating regimes.

In these figures described above, there is clearly a jump in the amplitude (streamwise
and transverse to the flow), also a jump in the wavelength as well as the phase angle
θXY across the Reynolds number 1550. It should be noted that this is not simply some
artifact of changing the sphere diameter, because even keeping the same diameter, the
jump is quite evident as the water–glycerin mix is modified to increase the Reynolds
numbers.

Appendix B. Presenting results using the Galileo number Ga

In this study, we have mapped different regimes of motion and wake patterns for
rising falling spheres in {m∗, Re} space. However, studies of rising and falling bodies

sometimes consider the effect of the Galileo number, Ga =
√

|1 − m∗| gD3/ν, on the
body motion, rather than Reynolds number (e.g. Mougin & Magnaudet 2002; Jenny
et al. 2004; Veldhuis & Biesheuvel 2007). These parameters are easily related. In the
case of a sphere that has reached a steady state, the mean drag balances the net
buoyancy and weight:

FD = |πρD3/6 − m|g. (B 1)

Appropriate normalization of (B 1) relates Re and Ga through the drag coefficient
according to

Re =

√
4

3

1

CD

Ga. (B 2)

To predict the dynamics of a particular sphere, parameterizing the problem in
terms of {m∗, Ga} can be useful. Calculating the Galileo number requires only the
properties of the body and of the fluid, and is therefore independent of the motion.
Consequently, the sphere may be located immediately in a map of {m∗, Ga}, such as
the one shown in figure 32, for reference. The Reynolds number, on the other hand, is
not known a priori, since it depends on the terminal velocity, which in turn depends
on the sphere dynamics. As a practical matter, however, Re may be approximated by
substituting an estimate of the drag coefficient into (B 2). Subsequent iterations may
be performed using the drag data provided in figure 12 to obtain a more precise value
of Re.

Although the Galileo number allows predictions to be made somewhat more
rapidly, the use of the Reynolds number has purpose. The problem being considered
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here is of a sphere moving through a fluid under the action of some constant force.
The fact that this force happens to be due to gravity is not essential to the dynamics
that occur. Moreover, the Galileo number is not defined for flows around bodies
that are not moving due to gravity, like fixed or tethered spheres. We have seen
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that comparison with such bodies is useful, for example, in our discussion of wake
modes. While the wakes of freely moving spheres have been the subject of relatively
few previous studies, they are related to the better-established patterns observed for
fixed bodies. Similarly, with knowledge of the Reynolds number, we may compare
the present results for the critical mass to experiments using tethered spheres, which
yield m∗

crit in good agreement with our measurements for freely rising spheres. For
each of these systems, there are similarities in the underlying fluid mechanics, and
they may be related directly with each other upon employing the Reynolds number.
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J. Fluid Mech. 61, 633–663.

Schmiedel, J. 1928 Experimentelle Untersuchungen über die Fallbewegung von Kugeln und
Scheiben in reibenden Flüssigkeiten. Physik. Zeit. 17, 593–610.

Scoggins, J. R. 1964 Aerodynamics of spherical balloon wind sensors. J. Geophys. Res. 69, 591–598.

Shafrir, U. 1965 Horizontal oscillations of falling spheres. Tech. Rep. AFCRL 65-141. Air Force
Cambridge Research Laboratories.

Shakespear, G. A. 1914 Experiments on the resistance of the air to falling spheres. Phil. Mag. Ser.
6 28, 728–734.

Stringham, G. E., Simons, D. B. & Guy, H. P. 1969 The behaviour of large particles falling in
quiescent liquids. US Geological Survey Professional Paper 562C.

Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and turbulent
flow past a sphere. J. Fluid Mech. 416, 45–73.

Veldhuis, C. & Biesheuvel, A. 2007 An experimental study of the regimes of motion of spheres
falling or ascending freely in a Newtonian fluid. Intl J. Multiph. Flow 33, 1074–1087.

Veldhuis, C. H. J., Biesheuvel, A. & Lohse, D. 2009 Freely rising light solid spheres. Intl J.
Multiph. Flow 35, 312–322.

Veldhuis, C., Biesheuvel, A., van Wijngaarden, L. & Lohse, D. 2005 Motion and wake structure
of spherical particles. Nonlinearity 18, C1–C8.

Wieselsberger, C. 1921 Neuere Feststellungen über die Gesetze des Flüssigkeits- und
Luftwiderstandes. Physik. Zeit. 22, 321–328.

Williamson, C. H. K. & Govardhan, R. N. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech.
36, 413–455.

Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder.
J. Fluids Struct. 2, 355–381.

Wu, M. & Gharib, M. 2002 Experimental studies on the shape and path of small air bubbles rising
in clean water. Phys. Fluids 14, L49–L52.


